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SUNMARY

An important reguirement of all Ph.D. candidates is
preparation and defense of wvhat is knovn as the "first
proposition.® The proposition is intended to be a reviev of
the 1literature relevant to the subject of the dissertation,
and an outline of the goals and methodology of the
disgsertation. In the present case HNr, Stuart Hara subaitted
such a proposition last fall. Because it contains a unique
reviev and assessment of the literature dealing with bubble
grovth and collapse, we have slightly amodified his
proposition and have prepared from it the first Technical
Report for this contract. The report is of a reviev nature.
However, in Section IV we have carried out some computations
to show regions of agreement and disagreement between
published theory and experiment. Section V is a description
of proposed theoretical and experimental research, some of
vhich is currently undervay.
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I INTBODUCTION

Cavitation - the formation and subsequent bebavior of
gaseous volumes, usually in a continuous liquid phase - has 1long
occupied a prominent position in engineering theory and practice.
The damage resulting from agquatic cavitation may be the presjer
example of the practical importance of this phenomenon. As a
result, the study of naval architectural hydrodynamics in
particular repains a very active field in which the 1limited
reproducibility and questionable direct applicability of
laboratory work continues to challenge vorkers.

In reviews by Plesset and Prosperetti [65] and Acosta and
Parkin [1] a npatural concentration on aqueous systeas is
apparent. Yet, even for this specific Newtonian fluid, the role
of geometry, both macroscopic and microscopic, and numerous other
possible design variables, remains unclear. Also, tvo competing
regimes vhich divide the field exist: nucleation or aicroscopic
inception, and bubble or cavity dynaaics. The relative
importance of each regime varies according to the specific
circuastances.

The phenomenon is further complicated by the introduction of
dilute sacroaolecular solutions into experimental systeas.
Cavitation inception in flov past blunt bodies is definitely
inhibited. To measure the state of 1liguid flov at which
cavitation appears, an "incipient cavitation nuaber," ci. has

been defined

_ PP

A

i 1208 ™
vhere P is the local free stream static pressure, P the liquid
va por ptgssnte, p is the ligquid density, and Vv the zree streas
velocity. Ellis, et al. (25, 27)] have expgtilentally found a

reduction of ¢ by as much as 70% from its value for tap vater

for a solution of 300 ppm Guar gum.

That this cavitation inhibition is not merely a nucleation
effect is demonstrated by the change in appearance of the
cavities upon formation. Ting ([83] showvs photographs which
display cavities vhich are smaller than their counterparts in
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pure vater. Hoyt [43] and Ellis, et al, [26) have also commented
on this qualitative change in the nature of the cavities.

Bllis and Ting (26, 84] speculated that this cavitation
suppression is a manifestation of the elastic properties of a
son~-Newtonian solution which aight similarly inhibit the growth
of an individual cavitation bubble. To test this hypothesis,
they investigated the spherically symmetric grovwth of a single
bubble in an othervise gquiescent dilute polymer solution [81, 82,
84]. Agreement betveen theoretical analyses and experiments was
good, but in both the presence of the macromolecules retards’
bubble growth only slightly. Since this retardation is
insufficient to account for the cavitation inhibition in flows,
another approach must be taken.

Dilute polymer solutions can have strong, and often
unexpected, effects on the velocity field of a flow. Acoustic
streaming is a prime example [15). 1In this case the direction of
the secondary flowv generated by an oscillating rod is actually
reversed by the addition of a spall amount of polyser.
Theoretical analysis has shown that this reversal is consistent
with the stresses introduced by the viscoelasticity of the
liquid., Thus, there is a strong possibility that the alteration
of overall flovw field reduces cavitation effects by changing the
stress field around the point of cavitation, both before and
after nucleation. A successful analysis of cavitation inbhibition
is, therefore, expected to require inclusion of the overall flow
along with non-Newtonian elastic effects.

The model system proposed here is a single cavitation bubble
growing in a specified undisturbed flow of a non-Newtonian fluid.
Any analysis of this system involves a coupling between fluid and
flov which necessitates the synthesis of manifold disciplines.
One is Nevtonian bubble dynamics, vhich has, historically, dealt
most completely with spherically symmetric flovs, Here, it is
necessary to understand the relative importance of the numerous
physical effects and parameters vhich arise. In addition, the
imposed flov will often invalidate any assumption of spherical
symmetry so the extensive wvork on small drop deformation, slender
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body theory and singularity apalysis msay be applicable. To
include non~-Nevtonian effects the various constitutive
foraulations and formalizations should be evaluated. Previous
applications of these coastitutive relations, particularly to
bubbles, are especially important.

In subsequent sections, each of these subjects will be
treated in some depth. In addition, several preliminary results
atteapting to evaluate the importance of various physical effects
and to extend some other results will be presented. Further
steps of a similar nature are also proposed. Pinally, the more
ambitious plans for this research are presented. These include
some rudimentary ideas for experimental work which will, it is
hoped, give guidance for theoretical work and, ultimately,

confirm any analytical results.




II NEWTOBIAY BUBBLE DYNAHICS and DROP DEFORMATION

Just as most sﬁbsegnent researchers have been motivated to
study bubbles by interest in cavitation damage, BRayleigh [72, 50]
found this field sufficiently appealing to perform the €first
analysis of bubble dynamics. He solved the probles of the
collapse of an empty cavity in a Jlarge mass of liquid.
Neglecting surface tension, fluid viscosity, and any thermal
effects, and assuming spherical syametry, his result can easily
be derived from the equations of motion as

. 3.2 R) -
RR ¢ ——R = P(R)- Pu (2)
2 P

where , 1is liquid density, p is the pressure in the liquid far
-

from the bubble, and p(R) is the pressure at the bubble boundary,
vhich is also assumed to be the pressure throughout the bubble.
The specification of an incompressible fluid implies that the

velocity within the liquid is given by
2
R™ .
u(r,t) = —5F (3)

The neglected surface tension and viscosity terms can easily be
included to give a "generalized Rayleigh equation" [65]

RE + B’ = ——f 2e ALY (4)
2 ) pi p' R R

vhere p_  is nov the pressure inside the bubble vhich is assumed
to be hoﬁogeneous, and ¢ and u are the surface-tension constant
and ligonid viscosity, respectively. 1In the general situation,
both p and p, may be functions of time (or of R) and ¢ and u may
not b; constant. It is also important to emphasize that
spherical symmetry is assumed to persist throughout the process.
For pure wvater, o and u are weak functions of other physical
parameters, such as temperature, This has allowed successful
modelling under the assumption of constant values for those twvo
coefficients, Hovever, the composition and behavior of p with

the evolution of the bubble is not so simple. Plesset [653 has
delineated tvo categories of bubble dynamics which he has
labelled gas bubbles and vapor bubbles. Gas bubbles are those
cavities for wvhich the medium in the interior is largely or
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coapletely a persanent, noncondensable gas. FPor yapor baubbles
the gaseous phase consists almost entirely of the vapor of the
surrounding fluid.

Gas bubbles have been extensively investigated, particualarly
in the areas of surface oscillations and mass diffusion effects
[see reviev 65]. They bave technological applications to such
processes as plastics foaming, but, for the field of cavitation,
these gas bubbles are much less relevant than vapor bubbles.

The category of vapor bubbles is subdivided into two other

topics. The subclassification is based upon the extent to which

thermal effects alter p and thus, bubble behavior. The strong
temperature dependences o% equilibrium vapor pressure and vapor
density act to significantly reduce p for a growing bubble as
evaporation at the bubble surface cools %he interior. Using an
energy balance, and assuming that heat is supplied by a liquid
layeﬁ wvhich has thickness comparable to the diffusion 1length
{Dt) o the "thin thermal boundary 1layer" assumption, this
temperature difference can be estimated as
1T R &ML

3 ()2 4, .
wvhere L is ¢the 1latent heat of evaporation, p (T) is the

{1}

AT (5)

equilibrium vapor density at temperature T, D i; the thermal
dltfu51v1ty, and t is the time requxred to grow to radlus R. For
uater at 15 C, v1th BR=0.1 cm, and t=10 sec, aT= 0. 2 C, while at
1m0 C, aT= 13 C. For the former case, in which the theremal
effect is not expected to be important, the proper term is
#cavitation” bubble. 1In the latter, and all cases where thermal
effects dominate inertial effects, the result is "boiling" or
“vapor" bubbles.

The cavitation bubble is the simpler case since, vith
complete neglect of thermal effects, p. = p = constant. Then,
for a constant p and neglecting visco%s ei%ects

o2 R. 3 2 2 pq-p~ 8. 3 20 Ro 2
(a ) o 3 . { (n ) ] ’R[ (x ) ] (6)
vhere initial values are signified by the subscript zero. Por

R= 0 and again neglecting surface tension, the Rayleigh result

S s b D« kb A




for time to coaplete collapse is

5 /6 3 172 . 1/2
. L678) *2 Y% o015 (—2—"%
o r(\/3) 2(p_p,) o PeaPy °

Quantitative experimental confirmation of this value was given by
Laaterborn [52]. He was able to generate "empty" cavities by
focusing a pulse from a Q-svitched ruby laser on a point on the
interior of a 1liquid mass. Agreement betwveen experiment and
equation (7) wvas excellent, despite the actual compressibility of
the liguid. Note that this compressibility is expected to become

significant in the final stages of collapse, when the Mach number’

of the bubble wall becomes large.

To analyze the more complicated vapor bubbles, it is
necessary to sclve the energy equation along with the coupled
Rayleigh equation. Plesset and zZwick {66, 67] found that under
the assumption of a thin thermal boundary layer, the temperature
at the bubble wall is approximately

2 .
T=T - D ;/2 Lp' } Rt(xl R(Xx) o dx (8)
- " k x=0 [Jf B (y)dy]’*
wvhere T is the temperature at infinity, D is the 1liguid thermal

diffusi;ity, L 1is the 1latent heat of evaporation, ,' is vapor
density, and k is the thermal conductivity of the 1liquid. The
growth of the vapor bubble is governed by numerous parameters,
including A which gives a linear approximation to the
relationship between vapor pressure pv(T) and T

Pe(T) - P,

= A (T ~-T) 9
P b
where Tb is the boiling teamperature at pressure P . Other
constants are defined as °
20 172
a = (—x) (101)
» By
ALp' D 172
u = ( ) (108)
3kRya wa

and g, vhich is implicitly given as a root of

2 172 ‘
8 *+ 3u(w8) -1=0 (10C)

If the mechanism by which growth is triggered from amn initial

equilibrium 1radius R is a constant heat source per unit volume
o
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of strength a, such that

n = at (10D)

then the bubble evolution can divided into four regimes [93].

The tvo most easily understood are the first, a "delay" period,
and the fourth, vhere growth approaches an asymptotic limit.

The initial growth occurs when radial increase is so rapid

that the change in bulk temperature, which follows from equation

(10D) , is insignificant, To first order, the solutions to the

governing equations are

: . 27 .
3 = —— e 11A
; R Ro 1+ PYEPTST exp(xBt) ]} ( )
; 2 2
. R a 27 (1-8 )
T(R) = T - 2 t 118
(R) - Y 2 (335 1) exp(apgt) ( )

32
¥y = (ADa) /(a Rok) (12)

The delay period is very short, but results in a new value of R,

slightly larger than R , from which "important" growth begins.
o L]
When R>>R , the heat diffusion has a limiting effect on R.

o
A consistent solution to the equations of motion and enerqgy which
takes into account the delay period is generated using an
asymptotic expansion. The leading terms of this solution are
at 172
R« Y ( )
[e] L 77} 3

zpz -1
2= [ 1+ 0(t /2)] (131)

114

=172
R [ 1«0t )] (13n)

T T -

o
The tvwo intervening regimes can be thought of as interamediate

i behaviors necessary for patch%;g together the first and last tiae

periods. Notice that R a t is a decreasing function of time

in the asymptotic regime.




The large magnitude of
the thermal effect on boiling

B . ! bubbles is illustrated in

- figure 1. Here the
’_ i theoretically predicted radius

i . ' 1 |} ws. time profiles for the

- ‘ Plesset analysis is shown
gx' . alomng with the ngleiqh result
« i for water at 103 C, Excellent

- | mavigion THEORY (T210308°C) ~ experimental agreement with '
; i \ the Plesset prediction was
i ' found by Dergarebedian [23].

| mummur:n(r-mn*c;)y He used a Q-switched ruby
- b—.—’JLJho laser to generate bubbles
//_<_MM‘Z'IQ‘MW("M'°' ﬂnder conditions Closely
o L1 -1 3 TR R approximating the theoretical
° 008 ;0 o8 . .
1(SEC) situvation.

FIG. 1 [23]

2wick and Plesset [93]) bave also analyzed the collapse of a
bubble including the heating effect caused by condensation of the

vapor.
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HBere numerical techniques Ao —— f I

are definitely required - : — = RAYLEIGH SOLUTION

since the expected large w—— SOLUTION WITH VAPOR HEATING
temperature differences 32

do not allow simple
analytic expressions for
vapor pressure or vapor

time scale for collapse
is so small that the

4
density. PRvidently, the §
&
)
[ 4
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dynamics of the process
vary only slightly from
the Rayleigh soluytion

-

(See figure 2). o8

-] 4 2 3
L . __ ¥ = MILUISECONDS

FIGUORE 2 {93, P.3238]

These analyses all contain the premise of a spherically
symmetric bubble, Plesset [61] initially performed a linear
stability analysis on the nearly spherical interface between tvwo
immiscible, incoampressible, inviscid fluids. He assumed an

initial drop shape given by
r =R + a(t) ¥ (14)

s n

vhere Y is a spherical harmonic of degree n [50, 54, 88, 92] and
a is ingtially small. The analysis proceeded conventionally in
order to determine the conditions for which a(t) will grow,
implying the shape is unstable, and those for which it will not,
implying stability. oOne finds that
R 3/2

a(t) = a(t) (-;’—) (15)

vith a-6G(t) a=0 (161)

8 (n-1) p,-(n+1) (n+2) p,
np, ¢ (n*?)p‘
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(n=1)n(n+1) (n+2) o/R*

R{np, ¢ (n+1),p])

where o is the surface tension constant and o and p are the

fluid densities of the interior and exterior liquids,
respectively. Thus

G(t) <0 promotes stability

G(t) >0 promotes instability.
This means that surface tension always has a stabilizing effect,
and from (15) , increasing R or bubble growth is seen to have a

(17)

stabilizing effect, vhile the opposite, bubble collapse, promotes
instability.

Plesset and MNitchell [64] then performed a more involved
analysis for a vapor cavity, neglecting the density of the vapor
and the viscosity of the vapor and the liquid. Results showved
that, for an expanding vapor cavity, if (|a(0) I/R << 1, then
Ja(t) (/R (t) << 1. PFor a collapsing cavity distorgion amplitudes
remained small so long as 1.0 2 R/R 2 0.2, but as R-»C, af(t)
increased as R—1/“. Thus the sphergcal shape is unstable for the
later stages of bubble collapse. These trends are valid even
vhen a small viscous effect is included in the treatment (7C].
Viscosity does tend to damp the growth in amplitude of the higher
order harmonics.

To determine bubble shape stability, no characteristics of
the deformation beyond its existence and magnitude were
necessary, a direct result of the far-field conditions. The
bubbles vere assumed to exist in an infinite fluid, quiescent
apart fromn the direct effects of the cavity; this is a
spherically syametric geometry giving an equilibrium shape with
similar character. Of course, this is not the only circumstance
in which a bubble may arise. There may be conditions imposed on
the fluid away from the bubble, such as an elongational flow or a
solid boundary, or the bubble may be initialized as nonspherical
and a detailed description of its evolution desired. Bubbles
have provoked some study in this regard, but more oftem liquid
drops and solid bodies have been examined, giving rise to general
techniques for nonspherical shapes.

10
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For bubbles and all imitially spherical bodies in an iaposed
flov, the primary method of study has been expansion of the
velocity profile in terms of spherical harmonics [76]. Use of
this method is predicated upon an assumption of creeping flow, at
least in the immediate vicinity of the bubble. Under this
restriction, Happel and Brenner [38, sect 3-2) offer a practical
presentation of the use of spherical harsonics, Lamb's General
Solution [S50]). The pressure field must satisfy

2
Yp=20 (18)

This suggests expanding p as a series of solid spherical
harmonics p .

vhere X and # are each solid spherical harmonics given as the
series gf solu?ions to
Vet =0 (211)
v.x = 0 (218)
Happel and Brenner proceed to describe the determination of the
P.» X and & for given boundary conditions.
éinsteih (24 ] vas able to calculate an equivalent viscosity
n* for a dilute suspension of rigid spheres without using
spherical harmonics. His result
S 3
n* = n (1 + -;-a ) (221)
a3 << 1 3 (22B)
vhere 5 is the viscosity of the dispersing fluid and a is the
volume fraction of spheres, was rederived using a harmonic
expansion by Prohlich and Sack [32). They wvere also able to
calculate the viscous and elastic properties of a substance
equivalent to a dilute suspension of elastic spheres in a steady
elongational flow. The non-rigidity of these elastic spheres
introduces the need to calculate the deformation which would
result if these same stresses were present for the elastic

1"

L a0 A A AN

n -»
P = E p (19)
n=-= n
Then Lamb's General Solution for velocity y is
v £ [9x(cX ) ¢« ¥ + (n+3) 2' 2 Ip ]
= £ x(r * -
- Nz=-= ~ n n 2u(n+ 1) (2n+¢3) E pn w(n+tl) (2n+3) '330)
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spheres. In assuming this to give an accurate description of the
non-sphericity, the deformation is required to be small and not
to perturb the flov significantly. In considering the behavior
of a viscous drop in the flov of a viscous, Newtonian fluid, two
important parameters are found to be

A= uk/n (231)
(]

k = c/qua (23B)

where ¢ is the the viscosity inside the drop, u , that of the
surrounding fluid, ¢ the surface-tension constant, a is the
radius of the drop and G some measure of flow strength. Taylor
[78] discussed the result for a simple shear flow, and found tvo
limiting cases. Por the first, with a=0(1) and k>>1, termed the
interfacial tension dosinated case, the drop deforas, to
order (1/k), into a spheroid vith its major axis u5° to the flow.
Por the second, with k=0(1) and aA>>1, to 0(1/A), the major axis
is aligned with the flow., Taylor and Acrivos [79] found that a
falling drop was deformed into an oblate spheroid vhen surface
tension dominates, and has spherical caps as surface tension
becomes 1less important. They also performed higher order
calculations by re-evaluating the flov around the deformed drop.
A general time dependent flow containing a viscous drop, and
other, more specific, flow situoations have been analyzed by Cox
[20]}, Prankel amnd Acrivos [31], Barthes-Biesel and Acrivos [4],
and others ({36, 37). The wviscosity ratio a (23a) and ratio ot
surface ¢tension to flov strength k (23b) remain important
parameters. In the notation of Cox [20], the deformed surface is
given by
r=1¢* ef(ri/r) (24)

vhere ¢ is a small parameter. The function f is expanded in

teras of spherical surface harmonics as
s

9
f=x? [ —m— (/1) ] (25)

Pa ar'ar‘ r=1
Hakimi [36) presents experimental results which compare well with

theoretically derived values for P . His work made use of an
P9

12
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orthogonal rheometer to generate flow fields with variable
contributions from vorticity and deformation. Despite this
success, there is ®"sose confusion®™ among various vorkers about
the eguations to be solved in determining the P . BRallison [71)
atteapts to unify these differing results, gﬂd in so0 doing
concludes that, within the range of validity of this analysis,
there are at least three special cases in wvhich an equilibrium
shape say be achieved. These special cases are:

Weak flowv - k>>1 with a=o(k)

Bigh viscosity drops - a>>1 wvith k=o(a)

High viscosity with comparably weak flov - k, a>>1
PFor bubble dynamics, only the first case may be useful.

Y - - Fr e e e me—e e

; / solid boundary 7

Compcbnolupoﬁmnhﬂydﬁernﬁﬁdhbﬂohpu(opndnb)u.
collapes of & spheriocal bubble near & plane solid wall with theoretical curves taken from
Plessst & Chapman (1971) (solid curves). The framing rate is 300000 frames/s, the maxi-
mum bubble radius R, = 2:6 mm, the distance of the bubble centre from the wall
b = 3-9 mm and bR, = 1'5. _

Curve o 1 | 3 4 8 ¢ L) '

Time, R_.(n/Ap)t 0 0725 0825 0961 0991 1016 1038 1-030 !
{ps is the density of the liquid and Ap is the constant difference betwesn the ambient
liquidmond the pressure in the cavity.)

PIGORE 3 [63, P.396)
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The presence of a s01id boundary in the vicinity of a bubble
alters the flov created by the cavity dynaasics. In the collapse
process a cumulative jet is formed which may be one of the major
causes of the destructive action of cavitation. Experimsentally,
the jet has been observed in laser-induced bubbles ([53], with
qualitative agreement achieved with numerical calculations [65]
(See figure 3). The theoretical wnodel, hovever, does not
generate jet speeds sufficient for the destruction encountered in
practice, so that other factors such as nonspherical initial
shape have been investigated [70]. ’

An initial nonsphericity is important even in the absence of
an imposed flow or solid boundary.

The requisite

mathematics has been

put forth by Hsieh i
f45], who includes
equations for heat

WITIAL SHAPE

and mass transfer
effects,
compressibility and
suggests variational
methods. Simplified ‘

numerical results by @\

other authors [17] : t b cotrem P o7 STuncTRY
show that an '

initially prolate
spheroid (figure 4a)

Bubble surfaces frem case A

WTIAL SMart

will form two jets
upon collapse, vhile
an oblate spheroid
(figure 4b) leads to
a dumbbell form.

These nonlinear @

results vere Bubbie surfaces from case 8

compared with the : FIGURE 4 [17)

linear theory

s b o P o7 SreaTRY
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by Plessmet and fitchell (64)] in their detailed stability
analysis and good agreesent vas found until the final stages of
collapse.

The success of the linear analysis in predicting bubble
behavior even for large deformations is a pleasant surprise.
Bovever, such analyses, which begin from perfect spheres, cannot
be expected to bhave such a large range of validity. Even the

cited linear analysis eventually becoses invalid. Monetheless,

these shapes are important; there is a strong possibility that
bubble dynapics will generate highly deformed shapes in certain
imposed flows since the small vicosity ratios a (23a) present do
not result in a "small deformation®™ equilibrium, in the sense of
Ballison (71], unless the flov strength is very low, or surface
tension dominates. The most common method for dealing with
bighly deformed bodies is called slender body anmalysis. The
theory neglects inertial effects and, as the name suggests, has
been created for flows around 1long, slender, solid bodies
characterized by small thickness ratios «.

&« = byl <K 1 (26)
vhere the cross-sectional radius is of order b, and 1 is the
length of the body.

Slender body theory was initiated by Burgers [ 13], vhen he
attempted to determine the force on a long, slender ellipsoid ot
revolution at rest in a unifors translational motion @. He began
the analysis by assuming the disturbance produced by the body was
like that which would result from a line of force on the symmetry
axis, which is of magnitude

£(2)
£(2)

2 4
A + A (z/7a) ¢+ A (z/a) 1z1<a
o 2 4

27
0 iz(2a 27

vhere a is the semi-major axis, z is the distance along the axis

from the center of the ellipsoid, and Ao. Az, and A“ are

constants. He vas able to derive

Geual
£ = sl (28)
1n(2a/b) - 0.5

15




: which is the limiting form of the result obtained for spheroids
of finite cross-section. Subsequent efforts 4in this fjeld by
other workers have extended this type of analysis to non-uniform
cross-sections [6], shear flows [21(2)], and even curved axes
[21(1) ). In all cases, the intended result is the function P(2z)
vhich best matches boundary conditions, and 4is often obtained
using matched inner and outer expansions. PFrom P(z), the forces
and torques on the body can be calculated.

A single function P(z) can give exact results only in the
limit as x->0. This function P(z) can egquivalently be comnsidered’
the distribution along the axis of point singularities in the
flow field, or Stokeslets [5]). The velocity and pressure field
duye to a Stokeslet rj [11]) is

r- e r' r-
0 = i (2B, =5 (292)
1 Bwu r o
) T4
P = =i 3 (29B)
e r

For bodies of finite cross-section, it is only possible to
generate exact solutions to Stokes flow problems by determining
the proper spatial distribution of Stokeslets gnd the other
fundamental singularities (figure 5), vhich can be derived froms
the derivatives of the Stokeslet [11]. Thus, just as small
deformation methods may be valid for finite deformations, the
slender body singularity technique is extendable to finite
3 thickness ratios. Host shapes are analyzable, at least for
] Stokes £;ov and rigild bodies.

STORES OOUBLET STRESSLET ROTLET
_(COUPLET)

PIGURE 5 [11, P.25)
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IIXI BON-NEWTONIAR EFFECTS

Hany instances of seemingly anomalous behavior of
non-Newtonian fluids are well-documented. Two of the Bmost
commonly cited examples are rod climbing or the Weissenberg
effect [8, P.92], and extrudate or "die" svell [8, P.102].
Schovalter [74) emphasizes the ™counter-intuitive"™ nature of
these effects, and explains that this is a consequence of the
Bewtonian character of that very common fluid, water, which is

the basis for such intuition. %¥hile water, and all truly.

Wevtonian fluids, exhibit no elastic forces, non-Newtonian fluids
often do, and the existence of such forces can be used to explain
sany of the unexpected effects.

Several of these effects can be viewed as exhibitions of
fluid properties which are also relevant to cavitation
inhibition, particularly those properties which involve a free
surface or result in a macroscopic alteration of the flov and/or
pressure field. 1In the first cateqory, exasples include:

jet stability - in a Newtonian fluid, breakup of a free

jet occurs in clearly defined waves. Such definition
is not apparent for fluids wvwhich exhibit elastic
properties [74, P.3].
open channel flow - for many non-Newtonian fluids, the free

surface of the 1liquid when flowing down an open,
inclined channel is convex, it is virtually flat for
the Newtonian case [8, P.105].

Demonstrations of the second type of effect are necessarily more

involved, reguiring some flov visualization or measurement

techniques, Yet there are good examples, including:

secondary flow induced by an oscillating cylinder - as

previously cited, Chang [15] observed reversal of
secondary flowv (figure 6) for polyacrylamide solutions
as dilute as 20-30 ppm. He also found the situation
amenable to analysis.

o
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Secondary flow produced by a long cylinder oscillating normal to its axis. The
cylinder is viewed on end and the direction of oscillation is shown by the double arrow. @ A water/

glycerin mixture moves away from the cylinder along the axis of oscillation. ® The direction of the secon-
dary flow is reversed when 100 ppm polyacrylamide (Separan AP 30) is added to the water/glycerin

mixture.
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flov past a flat plate - | :::::ﬂ%::w

experimental results e i S
[41] show definite
changes in particle

position (figure 7) and
fluid velocity (figure
8) when a d¥ewtonian
liquid is replaced by a

viscoelastic fluid in a
flow with this siaple
geometry.

X~ COMPONENT OF VELOCITY

DISTANCE DOWN THE PLATE (X)

Schemotic diogrom of observed kine-
matic behavior for viscoelastic fluids.

FIGURE 8 [41, P.257)

Finally, a most puzzling instance of non-Newtonian behavior, and
one which actually involves bubbles, arises in the recent
experimental wvork of Hassager fuo]. He photographically
demonstrates the existence of a knife-edged, asyametric "negative
vake" behind a bubble rising in a non-Newtonian fluid. There are
many unanswered questions here, most of which have relevance to
cavitation inhibition.

To theoretically analyze the flow of any »material, it is
necessary to construct a model, wvhich, 1if successful, will
®"accurately" predict the stress field in that material or class
of materials under varying conditions of motion. Such a model is
called a constitutive equation and is often formulated to
determine the stress tensor § for given material conditions,
present and past. The constitutive equation must satisfy
numerous physical principles and ideally vill cover a broad range
of materials, but this breadth should not impair its practical
applicability.

Por non-Nevtonian fluids, any attempt to formulate a
generally applicable constitutive equation is complicated, and
often stymied, by the negative nature of the definition of this




class of matter -

Non-Bewtoniap Pluid: A1l fluids vhich are pot Nevtonian.
Onder the constraint of incompressibility,
v.¥x =0 (30)
wvhere vy is the vector velocity in the fluid. The constitative
equation for a Newtonian fluid is
S§=-pl ¢+1 (313)
=-pl ¢+ u (V¥ ¢ ('1)T] (318)
wvhere p = -(1/3) tr S, T is the extra stress temnsor, and u is the
Newtonian fluid viscosity. For a sufficiently simple flow, the
essential feature of this relation can be rewritten as
r = ye (321)
vhere « is nov the extra stress, e is strain, and the dot denotes
time differentiation. A similar relationship for a purely
elastic material is
+ = Ke (32B)
wvhere K is the elastic modulus. The presence of viscous forces
and elastic recovery in many non-Newtonian effects suggests the
combination of these ¢tvo constitutive relations to describe
non-Newtonian behavior. Connecting elements exhibiting viscous
damping and elastic recovery in series, the Maxwvell element,
figure 9, arises, vith its constitutive relation
r+tAr = u e (33)
Other simple combinations of the elgstic and viscous elements
result in other linear viscoelastic equations, including
Tt Ar = u (e + e (34)
Further sophistication 1is possible by including multiple values
of viscosity and modulus; the adjustment of these values allows
better agreesent with certain experimental data.

. ANN——

FPIGURE 9 Naxvell Element
The tvo equations (33) and {34) are differemtial
representations. The Naxvell element can also be described in
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integral fora as
' t
v(t) = 2(u/a) 6 exp[-(t-t')/a] e(t*) at! (35)

This integral form introduces the notion of a memory fuaction.
The exponential kernel of the integrand weights the contributions
to «(t) by the strain e(t') at past times t'. By its
mathematical properties, this exponential memory function places
more emphasis on recent values of e. This distribution satisfies

P e NN SRS

a common-sense concept formlly stated as the principle of fadimg

mepory.

These linear viscoelastic models, which employ simple time
differentiation, cannot be generally valid because they do not
satisfy another prescription for constitutive eguations, the
principle of material objectivity. The mathematical criteria for
satisfaction of this principle are complex, but the concept is
simple; the behavior of a material as calculated for a given
model must be independent of observer or frame of referemce. The
lack of nframe-indifference® of equation (33) means that the
calculated response of a material which obeys this equation, when
placed on a rotating table, would vary with the rate of this
rotation, even when inertial and relativistic effects are
neglected.

Another way to view this difficulty vith an eguation 1like
that for the Maxwell model is to recognize the ambiguous nature
of any measure of relative strain for non-infinitesimal
deformation, To illustrate, consider a bar of length 1 which is
stretched to length 1l¢al, figure 10.

' FIGURE 10
STRAIN

Coose

L— 1+Al ——-l

In the limit of infinitesimal strain, as al-»0, the relative

strain is given by two egquivalent expressions

Al Al
lim — = iim
Al-»0 1 Al-»0 1leal

(36)
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However, if Al increases, these tvo expressions are no longer
equivalent, and there is no natural choice between them which |is
generally valid, To use such measures without discrimination
implicitly restricts their validity in flow to infipitesimal
relative strain.

The restriction to infinitesimal relative strain is a first
example of the specificity of certain models to limited types of
flow. The intimacy of the relationship betveen flov and material
behavior is illustrated very well by the simplification of §
vhich obtains when the tensor is evaluated for a comsamon class of
flovs, steady laminar shear flows. Steady lasinar shear flovs
are characterized by a geometry vhich grants a natural orthogonal
coordinate system. The flow is restricted to having a velocity
in only one coordinate direction, labelled 1, which varies with
respect to only one other direction, 2. If the extra stress ¥ is
defined for an incompressible non-Newtonian fluid as it was for
the Newtonian case, (31A)

Z(t)

S(t) + pl (370)

1
where P = - -3— tr S (37B)

Then restrictions on T can be found from components of the

general equation of motion

Dv
P -B=; = pg - grad p ¢ div T (38)
t
The result is
t 11z ti12 0
T = l t$21 t 22) 0
0 0 t (33) (391)
tr T =0 (39B)

Also, T can only vary vith the shear rate g and is symmetric.

Thus, ¢three material functions, «, l1, the first normal stress
difference and B , the second normal stress difference,

completely specify the tensor T. 1In one notation [74], they are

given by
r () = t(12) = t(21) (u0A)
H1(s) = t(11) - t(22) (u0B)
Nz(n) = t(22) - t(33) {40C)
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Por a Bewtonian fluid, both normal stress differences are zero.
It is the non-2ero value of these guantities which is manifest in
such instances of "counter-intuitive" behavior as the Weissenberg
effect. These values can be aeasured. Coamonly employed
viscometer flows are analyzable as steady laminar shear flowvs,
and have predictive value.

The characterization of a non-Newvtonian fluid afforded by

seasurement of the three material functions (40), although useful .

and relatively simple, is not complete; the degeneracy in T and
exclusive dependence on shear rate &« is flow-specific. The
simple 1linear viscoelastic wmodels are also useful, but
unsatisfactory in a general situation. These complications
suggest a "retreat" to more basic properties and to a foundation
for a constitutive equation or w=sodel. Noll [55, 85, 86]) has
presented the most elegant treatment. His formulation for the
most general constitutive equation for a body is

S(X,t) = F (%) (41)
= t,X
'l

where irt x(X) is a functional of the motion of the body froa all
past timé to the present time t. By invoking physically
reasonable assumptions, and retaining the defining equations
{37a) and (37b), Noll postulates the constitutive relation for an
incompressible simple fluiad

T(t) = [C 42
- T(tv) s!-O [-(t)(S)] (u2)

vhere tf is a functional, ¢ (s) is related to the relative
deformation gradient, and s is a Summy variable used to denote
the dependence on all past time. This constitutive equation is
simple in form, elegant, and contains only a few restrictions.
If more assumptions are made, equation (42) assumes a more
specific form. Rivlin and Ericksen [73] restricted the time
depepndence of T to s=0 (neat the present) and performed a series
expansion. In their notation

T(t) = E(A ., A ,..007) (u3)

1 2 n

vhere the A are the Rivlin-Ericksen tensors, functions of the
i
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velocity gradient L, given by
L=L L etE ML (49)
n n “n i=1 i Ti T(n-i)
A fora such as (43), though more restricted than that of (42) is
still not very useful, and special cases must be examined. It
the dependence on all Rivlin-Ericksen tensors higher than the

gecond is suppressed, and 4 meets certain mathematical

conditions, it can be expanded as

2
A+ AA +AA) + ... (U5
@), t e, (2,2, %A R) (>)

Despite all of these restrictions, equation (45) 1is still

2
T = + + +
I=ed, teld,r e}

P

cumbersome and in practice it is often truncated after two terms.
This yields the equation for a "second order fluid," which has
been found to be of value in soee circumstances.

Another approach to constitutive equations has been
motivated by the usefulness of the linear viscoelastic equations
and the existence of some physical meaning for the comstants.
For general situations, it is necessary to modify these equations
so that they satisfy material objectivity. Oldroyd [56]
recognized that the probles originated in the taking of the time
derivative for a coordinate basis wvwhich is fixed 1in the
*]laboratory" reference frame, He suggested manipulations with
respect to coordinates inherent to the body. The result has been
the formulation and use of many specialized types of derivatives
which are implicitly materially objective. These include the
codeformational derivative and the corotational or Jaumann
derivative. The Jaumann derivative is given, in tensor index
notation, by

Qa =-ia ovka -uka -uka
Dy ™ Tt i3 id,k Y1 k3 T Yy ik
vhere v is the velocity and « vorticity. Bany constitutive

(46)

equations have bpeen formulated using these derivatives [8],
including the corotational Jeffreys model

D
I l1‘§;I = 2u (D ¢ 12%2) (47)

where D is the rate of deformation. Proa consideration of the
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applicable mathematical properties, 0ldroyd added nonlinear terms
in T and D to give the 0ldroyd eight-constant model which, in
Cartesian coordinates, is

\]
O+ AF %5y %ty 7 %1 %% Y St P Yita sy
= 2y [4 OA—&-d -2ud . d ¢+ud a 6 ) (48)
ij 280t iy 2 ik kj 2 k1 k1 ij
wvhere t and 4 are the components ofT and D, respectively.

i
Jusz as di%gerential foras such as egquation (33) suggest
integral forms like equation (35), corotational derivatives such -
as equation (46) can be utilized in materially objective integral

eguations. Such equations can be generalized, in a manner i
similar to the generalization of the corotational Jeffreys model ;
to the o0ldroyd eight-constant wmodel, to give the Goddard :
memory-integral expansion

t . t t . . ..
T=-fG (t-t)Eats —(1/2)F £ 6 _(t-t',t-tM[['.f" + [".ri)dteary
ttt « .
- (W/2)s5 I(ZGIII(t‘t'-t't".t“f-')['[":[' (49)
+ Gn(t-t',t-tn,t-t')[é'.f;".f-' ¢ C.C".C']1dt™dtmdt - ...

vhere [" is a generalized strain tensor at t®", and the G , G ,
1 11

G s etc. are an infinite series of kernel functions.

111 These are only a few of the many constitutive equations
vhich have been formulated. Hore extensive compilations can be
found in sources such as Bird, et al, ([8]. Several different
models are still necessary because no single formalization bhas
been conclusively demonstrated to be preemiment; the usefulness
and applicability of each is often flov-specific and imperfect.
Despite these limitations, in a given flov situation it is often
possible to characterize a fluid sufficiently so that
semi-quantitative agreement and prediction can be made.

Critical evaluation of constitutive equations has been
hampered considerably by experimental constraints. The most
common experimentally achievable flovs are vicometric. These are
usually approximations to steady lasinar shear flow, with the

resultant simplification of the measurable extra stress tensor T,




see equation (39). The degeneracy in T results in a degereracy
in constitutive models; several predict the same behavior, wvhich
leaves no basis for cosparison. This has led experimentalists to
attempt to generate non-viscometric flovwus, particularly
elongational flows. A enfiaxial elongational flov is defiped by
velocity vector and rate of deforsation tensor of the fora

| ['1(31)0 '1(12)/ '1(!3)/ ] (501)
. 2 0 0
= - 50

where e is the elongation rate, One characterization of a
material under this type of flow is the elongational viscosity n
e
t(11) - t(22)
e e
The value of the elongational viscosity for a Newtonian liquid is

three times the value of the shear viscosity. Most experimental
techniques to measure ¢q have been restricted by mechanical
difficulties to the testing of high viscosity polymer melts with
high shear viscosities, n >10 poise, at lowv rates of strain,
€<10  sec [22]). These resgrictions do not apply to a technique
vhich employs bubble dynamics in a non-Nevwtonian fluid.

Pearson and Middleman [59, 60] have experimentally observed,
and theoretically analyzed, the collapse of a spherically
symmetric cavity in a viscoelastic fluid. In spherical
coordinates this is easily seen to be a uniaxial elongational
flov and kinematic considerations lead to

. 2R"R
e = - (52)
in equation (50b), where the notation of section II is retained.

The Rayleigh eguation (4) for a general fluid becomes

. 3,2
)

p(RR ¢+ —R“) = p(R) - p + g (V.T] ar (53)
2 - r

Various mathematical representations of T can then be used to
predict bubble behavior. These vorkers chose to analyze several
models, including three-dimensional versions of the BNaxvell
eguation (32) modified with codeformational (CD) and corotational
(CR) derivatives. They atteaspted to approxisate n and presented
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results in terms of a "bubble pressure function,” e, given by

20
e ( /2)(Pi a ) (34)

which is also expressible in L e ——
teras of initial values of '
t(11), t(22) and the material
constants A and 4 in (32).
Bxperimentally, the apparatus
schematically represented in 3

figure 11 vas utilized and
bubble behavior recorded

photographically. The results 1 s
for these models and )
experimental trials are shown _ —! |To}e—

graphically in figure 12 for a | {
solution of 2.0% by wveight |

hydroxypropylcellulose in Sketch of typical experimentol bubble shupe showing dimen-
water = sions needed for the data anelysis.

FIGURE 11 [59, P.718]
As e increases, the agreement between theory and experiment
progressively vorsens. The codeformational model fails in even a

gross gualitative sense for the higher elongational rates. This
led to an analysis employing more complex models, including a
modified corotational Maxwell fluid and an integral model, which
gave much more accurate predictions.




* @(t)data compared 1o CD(— — —)
and CR (——) models for bubble
collapse in a HPC solution, é = 0.285"

@(t)data compared to CD(— — —)
and CR {—~———) models for bubble
collapse in a HPC solution, § = 0.5857!

@ (1) data compared to CD(— — —)
and CR (——) models for bubble

collapse in a HPC solution, ¢ = 0.77s"

@ (dynes/cm?}

0(!)&1300mpan:d toCD(~ - ~)
and CR (———) models for bubble
collapse in a HPC solution, £ = 1.70s™*

Non-Newtonian effects in a situvation in which departures
froa sphericity become important have been analyzed by Wagner and
Slattery [91] as an extension of previous work for Newtonian
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droplets in a uniform BNewtonian flow [79). This particular
situation involved slow flow of the fluid, wvwhich allows a
perturbation technique to include inertial effects. A second
perturbation was then utilized to include non-Newtonian effects.
The constitutive wmodel employed for both inner and outer fluids
vas the Rivlin-Ericksen fluid (43) of grade 3, defined by (55)

1= 01A1 + 0252 + 03Af + 0433 * 05[11-12 + 12-51] ¢+ Osttllfll1

(55)
which is the siaplest grade to exhibit both normal stresses and
shear-dependent viscosity. Using matched asymptotic expansions,
drop shape vas found to be calculable through numerous, involved
perturbation coefficients, These shapes progress from "spherical
to prolate spheroidal, to ovate with large end leading and
finally to a teardrop shape wvwith extended rear"™ as velocity
increases, figure 13. These shapes are in qualitative agreesment
with experimental observations. Furthermore, bubbles have been
shown to be a special case included in this analysis [39].

R=1+02P2 (1) [R=1402 Pplu) + 0.4 Py(u)

'Ni e R.] T
<

O
-

Predictad droplet shap
FIGURE 13 [ 91, P.1206])
Even an accurate constitutive egquation, verified by

experiment for many flows, with carefully evaluated constants, is
of no value if the flov geometry of interest is too complicated
to allowv fruitful analysis.
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Such is the case oot o warER J

vith the flovs which I et . _
bave demonstrated . o e 0o’ °
: the non-Newtonian 5 ort . S O, )
; effect of immediate ;“L S * :
§ interest, cavitation M Y . -
; inhibition. The 5"' '
é results of Bllis, et oo} v «* 2 1
: al. [27) are shown E - * . e °v ° ]
in figure 14 for ] . W Vo e ° J
flow past a 03[
hemispherical nose, . N o L . g
for o , see equation , os ‘e REVHOLOS MAER ' 10~ v i
(1) . Cavitation . FIG.14 &15 [27]
inception vas b _ '
seasured by ooe I L -
I woicates maximow |
detection of the or RANGE OF D&TA -
initial scattering ¥ S
of a laser which vas (§ * _ o
adjusted to grazing ;§ o3 ! i i
incidence on the . adl ) . ‘. %
1 body. The effect g 4 |
{ vas noticeable for g o ¥
concentrations of § ozt
] polyethylene oxide % ol
i as lov as 20 ppm, as
u shown in figure 15, oo 20 30 40 % #6766 %6 10 o
- CONCENTRATION OF POLYETHYLENE OXIDE (WSR 301)

IN WATER 1N PARTS PER MILLION BY WEIGHT

The conditions wunder which the incipient cavitation number
is strongly reduced result in another alteration im cavitation
bebhavior vhich is as crucial to the comsplete understanding of 1
cavitation inhibition. The appearance of the subsequent cavity
is changed; the void appears smaller and Clearer for the polyser
solution under comparable flovw conditions.
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This change is noticeable for the

\ ' flov past a hemispherical nose used
.'1 . to generate the data of figure 14,
'\%'l/ A but is even sore apparent for a

:‘; different geometry. 1In figure 16

A the voids created by a cylindrical
‘) a b cavitation inducer on a rotating
il disc are schematically represented

for water (a) and a dilute polymer .
solution (b) . '
FPIGURE 16 [83, P.90C] Ting [83] takes the reduced length
of the inhibited void to be an indication of a "lower cavitation
intensity."” He also notes:
In water, the appearance of the cavitation bubbles is
very violent and chaotic, consisting of many very small
bubbles. As a result it scattered much of the
incipient light ... Howvever, as the polyamer is added,
the cavity looks more transparent, and shows a regular,
smooth wvavy pattern at the vapor-liquid interface [83,
P.900)]
This indicates that a polyser effect is pnot lisited to the
initial stages of cavitation, and does pot Bmerely alter a
mechanism of nucleation. A strong possibility exists that a

single bubble should exhibit commensurate effects.
The simplest model system which might exhibit evidence of ]
cavitation inhibition, and in the process give clues ¢to the
causes of the phenomenon, is a single bubble undergoing
spherically symmetric dynamics in an othervise quiescent fluid.
Pogler and Goddard [29 ) may have been the first to analyze this
situation for a non-Nevtonian fluid. Their analysis began with
egquation (53), vhich can be transforamed to '

oo 3 .2 :=Pea 2 - ¢t
BR ¢ —i° = LiPe _ _Z¢ /a { ALY R (56)
g 2 p oR | o

A simple, linear viscoelastic constitutive equation was chosen

t
t (t) = -26 N(t-t?) 4 (t*) 4at? (57)
1\ rr LT




and the memory function combined viscous and ™"Maxwellian"

coaponents as
H(t) = us(t) + G (-t/a) (58)
o

Dimensionless variables and a characteristic collapse time vwere
defined as

Y = R/R t* = t/t
o c
1/2 (59)
T = Y(t)) t =R (o/P)
1 1 c o -
vith the equation of motion becoming
. 3 . .- 4y
e ‘E—Yz == = B Nz Y B Ng, Y
12W : w;t t,) - Y Y 1n(Y,/Y) (69)
* *- n
- = (Ttexpl- —1 o —at
Nee N o Yy - Y, 1

for initial conditions Y(0)=1 and i(0)=0. Four dimensionless
parameters arise in this equation
A

| | = v a Deborah number
De te
Gate .
N = . an elastic number
Fl M
g2 (61)
o
N = 2., a Reynolds number
Re ut
3
R,
| = . a Weber aumber
We teo

By initially focusing attention on fluids with 1long relaxation
times, corresponding to N -»=, the authors demonstrated a
definite elastic effect on bggble collapse. Por large Reynolds
number the fluid approaches the limiting case of a purely elastic
material and rebound short of collapse is, at least
theoretically, possible. Smaller values of N introduced
viscous damping and this new mode of energy dissipggion increased
the value of the radius at which rebound occurred.

This work also included some calculations for finite Deborah
nusbers. In this case the void will eventually collapse to zero
radius, However, this may not be a monotonic decrease in radius
to collapse since damped oscillations may appear superposed on
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the overall reduction of bubble size. A value of lne=0.51 is the
lower 1limit of this oscillatory phenomenon for specified
parameter values [lnes-, p_/G°=10/7, !'esal. Thus elasticity
effects can have a pronounced influence on the behavior of a
spherical cavity for a/t=0(1).

The full explanation for cavitation inhibition is mot this
simple because the ratio of elastic relaxation time to

characteristic collapse ¢time in a dilute polymer solution is
expected to be much less than 1. Ting [82]) performed a amore

realistic analysis by employing a materially objective

constitutive maodel, the 0Oldroyd viscoelastic fluid
t + —B—t 29(d + -B-d ] (621)
A = A
i Tftpt i3 ™Ti5 Y2 pt ij
D ?
—.b. - -—-b
Dt ij at

TR T R U T T T U T B TR T
i X i i i i

k J ) (62B)
For a dilute solution, the material constants in equation (621)

can be related to molecular and component parameters as

n = no(1 + c[n) (631)
= 63B
A1 A ( )
A
A = ==---me- (63C)
2 1+c(n)
c[n] < 8 (63D)

where 5 is the solution viscosity, n 1is the solvent viscosity, a
is the terminal relaxation time o% polymer molecules, c is the
polymer concentration, and [n]) is the polymer intrinsic
viscosity. The mechanism by vhich bubble growth is triggered
from the initial eguilibrium radius R is a step change reduction
in the ambient pressure of magnitude 8*. A characteristic time
different from t defined by Fogler and Goddard (59) is employed
and thernsal effecgs, as analyzed by Plesset and Zwick ([67], are
included. The nev dimensionless variables and characteristic
time scale are given by

s .k s = PilTe)-Pul0)
R, p*

(64)
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« = v tr = Ro(p/P‘)

and the analogue to equation (60) becomes

. 3.2 4 s -3y 1 -1 -3y
SS ¢ =—=§ + - = An(l1 - S ) = =S (1 -S ) ¢ H(a)
2 Re S ] (65)
& 7 sa(x) 5 (x) ax 2 T exp[ (x~a) t'/a] S(x) [1 ¢ S:(X) Jdx
- - — —
§ (s s*yédy) § S (a) 5% (a)

vhere H(a) is the Heaviside step function, v is the polytropic
gas exponent, and the nev dimensionless parameters are

*R
PR il , a Weber number
20
alp' D 172 3/2 .
$ = R ( ) t? ¢ wvhich measures thermal
effects "R ° '1/2 (66)
Re = «=— (p%p) , a Reynolds number
n
c
E = Lnin, ' an elastic nuaber
A PpP*

Numerical calculations of R/R vs. time vere carried out for
parameter values corresponding 5to a 500 ppnm solution of
polyethz%ene oxide (aw=4.5x10 ) for o initial bubble size
1.02x10 cm and initial temperature T =103 C.
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Besults, figure 17, show 104}
little elastic effect. '
Experimental results for a
similar situvation [81)]

demonstrate a comparably 103;
small effect. The gross ;
cavitation inhibition present

in flov systeams is not in [ i
evidence here. The values of 0% Theory

.D used by Fogler and | -
e

Goddard, which did generate a
large effect, are seen to be

physically unrealistic. 10}

o——o— Solvent

—=< Polymer

“d.t(u‘c)——

&k A L d

a2 g taaad

10-6 10-5 10-4

. Initial bubble growth rates in the solvent and in the

polymer solution.

FIGURE 17 [ 82, P.1430]
Since significant cavitation inhibition is not present in a
spherically syametric flow, generation and analysis of more
complicated bubble geometries is indicated.
The jet-forming behavior '

of a collapsing bubble R

. Definition of main
geometric characteristics of a

bubble near a solid wall.

near a solid boundary was
ocbserved by Chahine and

Fruman [14].

PIGORE 18 [ 14, P.1406)

They defined geometric characteristics as in figure 18, and a

ratio ¢

n =R /L (67)
CcC,max

The addition of polymer solute seemed to stabilize the sphericity

of the cavity and to reduce the intensity of the re-entering jet

in experimental trials, see figure 19.
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FIGURE 19 [14, P.1407)

Thus, although t he
mechanism is far from
clear, it does seem that
this non-Newtonian effect
can be observed in single
bubbles.




IV PRELIMINARY ANALYSES

In any attempf to find an explanation for and clarify the
major factors contributing to a phenomenon as intricate as
cavitation inhibition, it is necessary to obtain preliminary
results. These results are expected to be first steps and
half-steps tovard comprehbhension of the techniques necessary for a
ccaplete analysis. They often ignore elements of the physical
situation which are integral to the effect of interest or
virtually duplicate previous work. The hope remains that a basic
understanding of the importance of a given factor, by its
inclusion or exclusion, will ensue,

The complete model system for this analysis consists of a
cavitation bubble changing size in a non-Newtonian fluid, while
this fluid experiences an imposed flow. Preliminary analyses in
spherical bubble dynamics seek confirmation of previous works on
the contribution of viscous, inertial, therwal, surface tension
and elastic effects and clarification of the role of each. An
imposed flow creates nonspherical bubbles, and artificial means
may be employed to study the effect of nonsphericity alone. The
inposed flov alone can also be studied, and might give some basis
for choice of a useful constitutive equation. After each element
of the system is examined individuvally, it is presumed that they

can be combined in a workable analysis.
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PRELININARY RESULTS
Viscosity and Inertia in Spherical Bubble Growth

Neglecting the thermal and elastic terms in Ting's analysis
[89], his result (65) becoaes

(1) (B) (C) (D) (E) (F)

. 3.2 4 S -3y 1 -1 1-3y

SS 4 «—§ + —_— = An{l - S ) =« =S (1 -5 ) ¢+ Ha)
2 Re S ¥

(65')
vhere S(a) 1is a dimensionless bubble radius which is a function
of dimensionless time a. The first two terms of this expression,
(d) and (B), embody inertial effects, term (C) includes viscous
effects, term (D) includes the 4internal and ambient pressure
difference, term (E) takes surface tension into account and the
last term, (F) arises from the step change decrease in ambient
pressure of magnitude px*, which is assumed to trigger bubble
growvth. (See section III for a more coaplete explanation.)

Ignoring the inertial terms, (A) and (B), the creeping flow
expression for radius vs., time results. 1In real t:xme, for all
t >0,

t = - e 1§R {x[ (-an + -1—)x3 + (- -1-)1 + (1.0 ¢+ An)]}-1dx
Re 1/R, W W
' x = 1/R !gg%
There exists ‘a critical value of the initial radius, R , which
results when °
1 -
-;- = AN (694)
R = 20 (69B)

o Py(T,) - Pe.(0)
Physically, this is the equilibrium radius  for a cavity
containing no noncondensable gas; i.e. it is the minimum
physically realizable equilibrium radius for a given vapor
pressure, ambient pressure and surface tension. Por R = Rc
equation (68A) can be simplified to give the time for gubblg

grovwth as

¢ = t! 1of S - an/ (1+an) 20
" "Re(1+an) 1 - an/(V¢an) ) (70)
38
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A more complicated general analytic solution exists for Ro > RZ.
Calculated profiles are shown in figures 20, 21, and 22 for othe
physical parameters corresponding to water superheated to 103 cC.

Retaining terms (A) and (B), but assuming tera (C) is
negligible, the result for the inviscid case is

172
t =R {o/lP (T ) - p_(C) 1}
(o] 1 O
. (11)
VR 2 . (Ber 1 2 -1/2 ax
N T S T 7 -3 x*

for R =Rc. This is an elliptic integral. However, analytical
resulgs orequire numerous tedious transformations to arrive at
standard forms, and tabular results of the subsequently required
values for the three types of elliptic integrals are mot readily
available, Numerical integration wvas employed as a simple
alternative to generate the profiles of figures 20, 21 and 22.

Dergarabedian'’s experimental results, which are expected to
include thermal effects and wvhich <closely approximate the
analytic results of Ting (recall Ting's analysis includes an
elastic term), see figure 17, are also shown in figures 20 and
21. From the lack of agreement between these data and the
theoretically generated results, it is apparent that the excluded
effects are very important. 1Inertia also appears to be nwmore
important than viscosity in this situation.
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Isposed Plow

To investigate the effect of an imposed elongational flow on
a spherical cavity, an attempt vas made to calculate the initial
deformation of this cavity in an elastic solid and also in a
viscoelastic 1liquia. The cases considered vere a cavity wvith
constant volume, and one with a volume profile given by V(t).
The interior fluid wvas assumed to be inviscid, both were

incompressible, and inertial effects were neglected in the
equations of motion. This analysis follows the vork of Prdhlich
and sack [32].

The elongational flov is assumed to be undisturbed at r=R,
where R>>1

ur(R,o,t) = 23(t)np2(cos 0) (721)

u_ (R0, t) ;(t)RPa(cos 9) (72%8)

in spherical coordinates, wvhere P is the second Llegendre
polynomial 2

The formalism of Happel and Brenner ([38] can be used to
generate the velocity field for a Newtonian fluid in terss o1
spherical harmonics, The wmathematical property of Legendre

polynomials
E P (o) sin o do = 0, 170 (73)

means that no net change in cavity volume can result from any
‘ term in a series expansion for v except the spherically
b symmetric P tera., Thus, the radi&lrvelocity at the gas-liquid
‘ interface isoinitially given by

u (r=a) = a(0) - (T4)
r .

a(0) = ¥(0)/(4sa’) - (75)
for any given volume profile.

Solving for the velocity field, temporarily ignoring the
zero tangential stress condition at the surface, but requiring
that

u.(r=a) = 0 (76)
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the velocity profile exterior to the spherical body is

= 'zi . 3 S ¢ 2r) ¢ P_(cos o) (7171)
YT [ rt c* L] e 2( °
3
u o= (x - — e [ dp (cos e) ) (178)
0 r¢ de 2

Calculating the tangential stress at the surface

. . d
d (r=a) = ¢ [—P (cos )] 7 O (78)
re de 2

Additional velocity components, which decay as r increases,
can be superposed onto this solution of the linear equations to
give a combination which satisfies ¢the desired zero stress

condition., The result becoaes
a )

u = —3:5 + 2¢P_(cos e)( - + r]) {791)
) o r 2
e )2 p_(cos 6) (798)
o 2 de 2

this axially symmetric velocity field can be recast as a streas
function given by

2. 3 3 ¢ |, 2
¢ =[aa+ (a -r )-;-sxn ) cos » (80)
In dimensionless terms this becomes
3 2
v = ula ¢+ (1-x ) (1-u )] (80")
vhere
a4 = Cos @
X = r/a
. . (81)
a = a/(ae)
F 3.
: v =9/(a ¢)

Streamlines for various values of a are shown in figures 23,

24, 25, & 26. The simplicity of this solution suggests that, at

least for creeping flovs, initial probleas are tenable

analytically. Also, the form of the solution and the streaslines

! confirm that the bubble will deform, and that techniques for
i nonspherical surfaces are necessary for subsequent work.
I
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A Perturbed, Growing Cavity

The effect of nonsphericity is studied through the
specification of an artificial situation. Assume an inviscid
cavity is generated, with a fixed, specified shape which is a
slight perturbation from a sphere. Also assume that the value of
the equivalent radius of the cavity is given as a function of
time, and that inertial effects are negligible in the Newtonian
surrounding fluid.

Specify the shape, for small parameter ¢ ,as

R(t) = a(t)[1 ¢+ ef(u)]) (821)
max{ £(u) ] = O(1) (82B)
u = CoS @ (82C)

n = fluid viscosity
Perform a perturbation analysis

0 1 2
!( ) + eg( ) + 0(e ) (831)

0 1 2
P = P‘ ) + ¢P( ) + 0(e ) (83B)

The geometric perturbation function £{u) can be expanded as
a summation of surface barmonics, P (u). If a trial function
n
f1(u) is chosen

= p 8u
f1(u) 2(u) (84)

and the expansions of Cox [20]) are applied, then it is easy to
show that

at . . 2 2 2
a = rekai e(3aP_(u) (a/r) [3(a/r) - 2]} + O(e ) (85A)
r r 2
. at M 2
u =0 ¢+ ¢[3a—c=P'(u-p) ] + O(e ) (858B)
[ r 2

The homogeneous nature of the boundary condition applied at the
surface, zero tangential stress, means that this velocity profile
is also valid for a linear viscoelastic fluid. Again, as in the
previous result, the creeping flov probleam has been shovwn to be
straightforvard and amenable to a perturbation analysis.
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PROPOSED PRELIMINARY ANALYSES
Blasticity, Surface Tension and Thersmal Effects

The result of FPogler and Goddard, egquation (60), and of
Ting, equation (65), can be solved for more parameter values to
generate profiles like those in fiqures 20, 21 and 22. With
carefully chosen values for these physical constants, i.e.
systematic departures from the wvalues expected for pure vwvater,

dilute polymer effects on spherically symmetric growth are
expected to be demonstrated to be minimal.

Imposed Flow

First, the analyses in the preliminary results section under
this subheading require completion, In addition, the initial

deformation of a spherical cavity under other imposed flows, such
as simple shear or the combination of shear and vorticity
afforded by an orthogonal rheometer, can be calculated. The
stress field should also be evaluated with particular attention
paid to changes in the magnitude of normal stresses. These
attempts should eamploy various constitutive relations, with
parameters corresponding to 1liquids ranging from a purely

viscous, to a completely elastic material.
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Y UDLTINATE PLANS and GOALS for this Research

The preferred goal of this research is to determine, by
seans of theory and experiment, vhether a model system consisting
of a single bubble in a well-characterized non-Newvtonian flow
exhibits the gross effects of cavitation inhibition.

THEORETICAL

Bost of the preceding pages have been devoted to an
introduction to the approaches and ‘:echniques available for
theoretical analysis of a bubble system. At this stage, it is
impossible to predict which single technique will be most
important. All will probably become necessary.

However it 1is achieved, the resultant tbeoretical systen
should be flexible and capable of including various flow
configurations. This is expected to allow some evaluation of the
importance of various factors within a flov, such as vorticity
and shear rate. A procedure which may be particularly important
is a search for an imposed flov which allovs a steady state
ponspherical shape of a bubble with constant internal pressure.
The ezxistence of such a flow is suggested by the first special
case mentioned by Rallison [71], the "weak flow" conditions. Por
a bubble, the viscosity ratio a (23a) is very small, so the
requisite flovw strength for eguilibrium might be too low to
generate important nonspherical effects. If this is not the
case, it 1is possible that the change in cavitation intensity
noted by Ting [82] will be manifest in a change of shape and/or
volume of the steady state cavity. This is likely to be a mucu
simpler analysis than any including bubble growth, especially if
ellipsoidal harmonics are applicable.

Just as Pearson and Niddleman's analysis gives some. basis
for the evaluation of constitutive relations, the results here
may be be of value in the assess.ent of constitutive accuracy.
Even without experimental results for comparison, physically
unreasonable results may eliminate certain egquatioas. With
experimental data, still closer scrutiny should be possible.

The problems expected here are numerous, particularly since
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the nonlinearity of the complete egquations of motion makes
analytic solutions unlikely. Exact solutions for limiting cases
will be found whenever possible, and the need for a great deal ot
effort and cleverness 1is anticipated in order to generate

numerical solutions.
EXPERIMENTAL

Two major types of experiments are envisioned in plans for
this research: exploratory and confirmsatory. Exploratory
experimentation is conducted concurrent with theoretical work.
Its purpose 1is to guide the development of theory, eliminating
unimportant approaches and distinguishing physical effects fron
purely mathematical ones, From this initial type of experimentai
work and theoretical analysis, a full theoretical model shoulu
arise, anrnd1 final testing and adjustment is made throuqi.
“confirmatory" =xperimental trials.

Sefors any of this work begins, logistical and technical
problems must be solved or circumvented. These include choice of
materials and apparatus, procurement of funds, and even ordering
and deliverv constraints, Once the apparatus 1s assemblel,
techniques must be learned and noned, and trial runs conducted,
A long process 1is expected to precede any experiments whichn
approack the model systenm. Initial decisions concerning
apparatus will depend on preliminary arnalyses and past work for
guidelines, Careful choice and characterization of tluids must
ta made, +then means must be devised for flow generation, bubpble
generation, and the recording and analysis of bubble behavior.

The reference fluid will, of course, be water, while the
test fluids are expected to be dilute solutions of polymers such
as polyethylene oxide [14, 27}, 5uar gum [ 27], or polyacrylamide
{15, 83]. The choice will depend upon the hehavior of candidate
addit ives under some new conditions which may be present in the
experimental procedure. All fluids wmust be characterizea
viscometrically, and also checked for variations in physical
parameters, such as surface tension, trom the values for pure

water, The flow apparatus used to generate the imposed flow may
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also be useful for fluid characterization.

The specific machinery necessary for flow generation will of
course depend on the desired flow. A simple one-dimensional
shear flowv can be generated by a two-belt apparatus (see figure
27a). A tvo-dimensional extensional flow results from a
four-belt apparatus (see figure 27b). A Couette flow can easily
be generated experimentally (see figure 27c). Perhaps the most
flexible, single flow geometry is present in an orthogonal
rheometer (fiqure 27d). By varying the offset, rotation rate and
plate gap, the amount of vorticity and shear present in the
undisturbed flow can be varied independently. Hakimi ana
Schowalter [37] used just such a device in their exverimenuts with
drop deformation. Trhus tne technology for and compornents of a
unit should be availaple ir th=2 Princeton University Department

of Chemical Engineering, where this researcn is being conduct-i.
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(c) (d)
FIGURL 27 Possitle Experimental Flow Apparatus

(a)

The moust versatile and sophisticated of the devices which
may be applicable to flow generation, and will detinitely be the
major means of rheological chairacterization, is a FHEOMETRICS
mechanical Spectrometer , which 1is now under order by this
department. Several flow geometries are available in tnis
d=vice, including Couette flow and orthogonal rheometer flow,
with a wide range or operating parameters. This instrument has
the added aivantage of capability for making sensitive dynamic
measurements of macroscopic elastic effects such as the total
normal force on a rheometer plate, By couwparing these
measurements for identical imposed flows, with ana without a

cavity present, additional conclusions Wwith respect to concepts




such as flowv alteration may be possible.

Bubble generation can take on tvo levels of sophistication.
If a steady state bubble shape is found to be achievable, then
cavity formation for such a flow may be as simple as injection of
a measured volume of vapor or gas into the static fluid.

To produce cavitation bubbles for dynamic study the
technique with the largest probability of success is the use of a
laser to trigger nucleation. A Q-switched ruby laser has been
used to successfully generate volumes in pure water which are
wall-modelled as single cavitation bubbles ([52, 53]. The
Q-switch 1is a shutter which contracts thé pulses of the ruby
laser into smaller segments of length 30-50 msec. In this short
timre, about 1 J of energy is introduced into a small region of
the fluid. Available references on lasers [51] shovw a wide
variety of similar devices to be evaluated.

The recording system is also very different for the steady
state or dynarmic bubble. The steady state shape requires only
sinqle photographs of +two or three views of the bubble. With
adequate lighting, a simple Polaroid camera should suffice,
although slide capability would be desired to allow projection of
the images.

The dynamic bubbles are expected to change on a time scale
of about 10  sec. or less (figures 20 and 21). Recording of
suchk rapid events photographically requires a very high framing
rate, Cameras with rates this hiqh, and higher, are available
(75], and have been used to record bubble dynamics (figure 28).
These cameras, however, are extremely éxpensive, e.g. the Cordin
317 with framing rate of 2x10 pictures per second costs
aoproximately $100,0C0. Rental of such units is also available.
This is an attractive proposition, especially for the early
trials when needs are not comspletely known. If the flow is not
axisymmetric, more than one viev of a bubble will be necessary
for analysis. Should reproducibility be found to be excellent,
then photography of the different views in different trials will
te acceptable; if not, an optical system for recording multiple
images on one frame may be necessary.
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Dynamics of a lascr-produced spherical bubble near a solid boundary. ‘I'Pe
framing rate is 75000 frames/s, the maximum bubble radius R,,, = 2:0 mm, the dis-

tance of the bubble centre from the boundary ¢ = 4-9 mm and the size of the individual
frames is 7-2 x 4-6 mm.

PIGURE 28 [53, P.400]

Analysis of the massive photographic record anticipated will
probably

require countless projections of individual images, and
subsequent fitting to analytical

expansions.
exploratory trials

Fortunately,

will probably be most useful for gqualitative
results, reducing the need for exhaustive

examination of
images. Later,

the
a good theoretical model will give accurate
predictions, minimizing the deviation from predicted shapes and
the need for fitting.
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The proposed overall ,
. ' POWER
system is diagramatically , {T‘”“*' SUPPLY

presented in figure 29.

. |
Of course, the details POWER i FLASH LAMP
SUPPLY | GROUND GLASS PLATE
are dependent upon future : -

developments. [Ruev usm-"swlj:c%?scuc

[~ L1QuiD

I
|
b mem — o ——

ROTATING
START DRUM OR MIRROR
CAMERA

Block diagram of experimental setup.

FIGURZ 29 {5«, P.23]
Many unforeseeable problems are expected to arise in the
course of +this work. Others may be at least partially
anticipated and must be Tresolved for success to be achieved.
Possible problems include:
1) Multiple bubbles
The ruby laser is thought to cause nucleation on Just
particles r771. The polymer solute molecules may act as
nycleatina centers, the result being formation of wmultiple
kubbl 2s. A possible solution would be to split the laser aui to
focus multiple beams on a single point from many angles.
2) Polymer degradation
The 1laser may also cause thermal degradation ct
polymer. This is very likely, at least in the immediate vicinity
of the focal poirt, and must be evaluated for macroscopic effect.
3) Surface tension
Impurities in water are thougat to change the dynamics
f a single bubble in Stokes flow by altering surface tension.
Polymer molecules might cause a similar phenomenon.
4) Vapor pressure
Is the vapor pressure of a dilute solution the same as
that of the solvent? Measurements need to be taken here. Une
possibility for testing the <coupled effects of 3) and 4) is a
static butble comparison between vater and the solution, since

surface tension and vapor pressure are the major determinants ot
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equilibrium radius.
5) Thermal effects
Error may be introduced into the system by a change in
thermal properties of the liquid or laser heating effects. Heat

effects from photographic lighting can be minimized using proper
filters.

6) Wall effects
By varying apparatus or bubble dimensions, it should be
possible to estimate the effects of the finite extent of the
experimental fluid. 1In using the Machanical Spectrometer, normal
force readings may also give an indication of the dirference

between theoretical flows imposed at infinity and real tlows.
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